
Container Based Virtualization

Applied

33rd Space Symposium

Colorado Springs, CO

April 3-6 2017

Richard Monteleone

Sr. Systems Engineer

Virtualized Ground System (VGS) “The Big Picture”
• vFEP (Virtual Front-End Processor) “Quick look inside”

• H/W Virtualization with Virtual Machines (VM’s)

• OS Virtualization with Containers “Let’s compare”

Container Technology Applied
• Making the transition “Approach taken”

• Building/deploying/running Docker containers

• Container isolation and monitoring

• Automation “Reaping rewards”

Summary/Questions?

Introduction

Virtualized Ground System (VGS)

vFEP “Quick look inside”

• Publish/Subscribe message bus architecture

 (loosely-coupled components, independently versioned)

• Highly configurable, extensible, scalable, secure and efficient

 Auto-created user interface and auto-generated documentation

• Extensive API Support (GEMS, REST XML/JSON)

Hardware Virtualization – Virtual Machines

Ground System/
Vehicle Sim

Hardened
Dedicated

OS

Hypervisor (Type-2)
Host OS

vFEP

Hardened
Dedicated

OS

vGateway

Hardened
Dedicated

OS

KS252 Crypto
Sim

Hardened
Dedicated

OS

Virtual Machine Virtual Machine Virtual Machine Virtual Machine

Hypervisor
(Type-1 VMware ESXi)

Bare Metal Server Hardware

Applications installed and configured on individual VMs

• Hardened Dedicated OS

• Application ISO images mounted and installed

• Command and telemetry channels interactively user configured

Things are really good now … could they be even better?

• Hardware sharing, Snapshots, vMotion, VM templates, Isolation, OVA’s,

Secure, Stable, Scalable

Operating System Virtualization - Containers

Shared OS

Bare Metal Hardware

App1

Bins
Libs

App2

Bins
Libs

App3

Bins
Libs

App4

Bins
Libs

Docker Engine

Containers: How do they differ from VM’s?

• Shared OS for containers

+ More resource efficient (only use what they need when they need it)

+ Extremely lightweight, fast to start

+ Capable of running directly on Bare Metal H/W, less H/W required

+ No Hypervisor required - OS Kernel/Container compatibility required

- Failures/cycling of the Docker Engine-OS-H/W are more impactful

Methodology leveraged to produce/evaluate “good” containers

https://12factor.net/ “The 12 Factor Application”

I. Codebase (single purpose) VII. Port binding

II. Dependencies (be explicit) VIII. Concurrency

III. Configuration and code separation IX. Disposability (easily replaceable)

IV. Backing services (think resources) X. Dev/prod parity (similarity)

V. Build/release/run (separation) XI. Logs

VI. Processes (stateless, non-sharing) XII. Admin processes

Transitioning into Containers

https://12factor.net/

Changes to how we install/configure/deploy/run applications

• GSVeh Simulator (single purpose)

Multiple applications (Ground System and Vehicle Simulation)

• Don’t store data within a container (backing services and disposable)

 vFEP Recording/Playback of command and telemetry data

Storing configuration files

• Application lifetime

Lifetime management no longer controlled internally

• Interactive application configuration and deployment

Eliminate ISO mounts for application installation

Need to automate image building and the deployment of containers

Transitioning into Containers cont’d

VGS deployment with Containers

Split GSVeh Simulator into two containers

Running the Docker Engine on a single Hardened Shared OS

Configured Docker version 1.12 and 1.13 environments

• Optionally running the Docker Engine/Host OS in a VM

– Leveraging both H/W and OS Virtualization Technologies

– Increased capabilities/flexibility

Bare Metal Hardware

vFEP

Bins
Libs

Hardened Shared OS

Ground
Sim
Bins
Libs

KS252 Crypto
Sim
Bins
Libs

vGateway

Bins
Libs

Vehicle
Sim
Bins
Libs

Docker Engine

Hypervisor
(Optional)

Creating Docker images, what needed to be done?

• Images are used to create immutable container instances

• Dockerfiles contain the instructions needed to build each image

– Build images FROM a (lightweight) initial image

– Extensive use of LABELs to support image/container traceability

– COPY/RUN used to install and configure each application

– Explicit EXPOSE for container to container communication

– Defined VOLUMEs as storage for record/playback of command
and telemetry data, configuration files

– Defined a (single) ENTRYPOINT to execute each container

• Removal of internal service lifetime configuration

– Now managed with the container lifetime

Docker files create Docker images

Initially images are built and containers are run manually
• Built images from instructions in Dockerfile(s)

– docker build -t=“vgs/vfep:1.0.1" .

• Create the VGS network

– docker network create --driver bridge vgs_network

• Run a container from an image as a daemon on the docker host

– docker run -d -p 30010:30001 --net=vgs_network

--name vfepA vgs/vfep:1.0.1

Equivalent using Docker Compose
• Define a single docker-compose.yml service definition file

• Single command: docker-compose up

– Builds images “if necessary”, creates a container network, deploys and
runs all containers

Virtual Ground System Operational !!!

Building images/running containers

Container Isolation

Running “bad” disruptive containers in the VGS

• CPU Stress container

• Memory Allocation container

Verify the VGS maintains a normal operational state

Undisturbed by “bad” containers sharing the same Docker Engine/OS

What’s really going on in the container environment?

Bins
Libs

Ground
Sim

Bins
Libs

vGateway

Bins
Libs

Bare Metal Hardware

vFEP

Bins
Libs

Shared Hardened OS

KS252
Crypto Sim

Bins
Libs

Vehicle
Sim

Hypervisor
(Optional)

CPU
Stress

Bins
Libs

Memory
Allocation

Bins
Libs

Docker Engine

Monitoring the environment (cAdvisor)

View/monitor the Docker Engine and images/containers
• Insight into resource limitations/utilization and performance

- docker run … --publish=8080:8080 --detach=true

name=cadvisor google/cadvisor:latest

Build/Deploy/Test Automation with Containers

(C)
Ground System Operational!!!

(A)
On-Demand & Nightly

Product Builds

(B)
On-Demand & Nightly

Docker Builds

Container Benefits

• Application scalability

• Lightweight

– Very fast startup, smaller in size, easily updated/distributed

• Cost reductions

– More workloads running on less H/W

– Less OS’s to license/manage/patch/update

• Containers are properly isolated from one another

– Perfect mechanism to support end-user/customer extensibility

• Facilitates troubleshooting/debugging

• More opportunities for automation in dev/test environments

Summary

Container Security

• Smaller footprints (fewer OS’s) means a smaller attack surface

• Vulnerabilities are inevitable

– Visible image/container metadata – be careful

– Image manipulation/injection concerns

Container History and Maturity
• Containers date back prior to 2009 - Linux Containers (LXC)

– https://content.pivotal.io/infographics/moments-in-container-history

• Windows containers a reality

• Docker transition from versions 1.12 to 1.13 was seamless

• Competition coming from rkt on CoreOS

– https://coreos.com/rkt

Summary

https://content.pivotal.io/infographics/moments-in-container-history
https://coreos.com/rkt

Container standards

• Open Container Initiative

• https://www.opencontainers.org

• Open industry standards

• Container Formats

• Runtime

Questions?

Thank You

Summary/Questions

https://www.opencontainers.org/

